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Overview

We defined the definite integral of a continuous function f (x) over an
interval [a, b] as a limit of Riemann sums.

In the lecture we extend this idea to define the integral of a continuous
function of two variables f (x , y) over a bounded region R in the plane.
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Double Integrals

In both cases the integrals are limits of approximating Riemann sums.

The Riemann sums for the integral of a single-variable function f (x) are
obtained by partitioning a finite interval into thin subintervals, multiplying
the width of each subinterval by the value of f at a point ck inside that
subinterval, and then adding together all the products.
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Double Integrals

A similar method of partitioning, multiplying, and summing is used to
construct double integrals. However, this we pack a planar region R with
small rectangles, rather than small subintervals. We then take the product
of each small rectangle’s area with the value of f at a point inside that
rectangle, and finally sum together all these products.

When f is continuous, these sums converge to a single number as each of
the small rectangles shrinks in both width and height. The limit is the
double integral of f over R.
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Double Integrals

The major practical problem that arises in evaluating multiple integrals lies
in determining the limits of integration.

While the intergrals of single variable were evaluated over an interval,
which is determined by its two endpoints, multiple integrals are evaluated
over a region in the plane or in space.
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Double Integrals over Rectangles

We begin our investigation of double integrals by considering the simplest
type of planar region, a rectangle. We consider a function f (x , y) defined
on a rectangular region R,

R : a ≤ x ≤ b, c ≤ y ≤ d .

The lines divide R into n rectangular
pieces, where the number of such
pieces n gets large as the width and
height of each piece gets small.
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Double Integrals over Rectangles

These rectangles form a partition of R. A small rectangular piece of width
∆x and height ∆y has area

∆A = ∆x ∆y .

If we number the small pieces partitioning R in some order, then their
areas are given by numbers

∆A1, ∆A2, . . . , ∆An

where ∆Ak is the area of the kth small rectangle.
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Double Integrals over Rectangles

To form a Riemann sum over R, we choose a point (xk , yk) in the kth
small rectangle, multiply the value of f at that point by the area ∆Ak , and
add together the products

Sn =
n∑

k=1

f (xk , yk)∆Ak .

Depending on how we pick (xk , yk) in the kth small rectangle, we may get
different values for Sn.
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Double Integrals over Rectangles

We are interested in what happens to these Riemann sums as the widths
and heights of all the small rectangles in the paritition of R approach zero.

The norm of a partition P, written ‖P‖, is the largest width or height of
any rectangle in the partition.
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Double Integrals over Rectangles

Sometimes the Riemann sums converge as the norm of P goes to zero,
written ‖P‖ → 0. The resulting limit is then written as

lim
‖P‖→0

n∑
k=1

f (xk , yk)∆Ak .

As ‖P‖ → 0 and the rectangles get narrow and short, their number n
increases, so we can also write this limit as

lim
n→∞

n∑
k=1

f (xk , yk)∆Ak

with the understanding that ∆Ak → 0 as n→∞ and ‖P‖ → 0.
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Double Integrals over Rectangles

There are many choices involved in a limit of this kind. The collection of
small rectangles is determined by the grid of vertical and horizontal lines
that determine a rectangular partition of R. In each of the resulting small
rectangles there is a choice of an arbitrary point (xk , yk) at which f is
evaluated. These choices together determine a single Riemann sum.

To form a limit, we repeat the whole process again and again, choosing
partitions whose rectangle widths and heights both go to zero and whose
number goes to infinity.
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Double Integrals over Rectangles

When a limit of the sums Sn exists, giving the same limiting value no
matter what choices are made, then the function f is said to be integrable
and the limit is called a double integral of f over R, written as∫∫

R

f (x , y) dA or

∫∫
R

f (x , y) dx dy .

It can be shown that if f (x , y) is continuous function throughtout R, then
f is integrable as in the single-variable case discussed earlier.
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Double Integrals over Rectangles

Many discontinuous functions are also integrable, including functions which
are discontinuous only on a finite number of points or smooth curves.
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Double Integrals as Volumes

When f (x , y) is a positive function over a rectangular region R in the
xy -plane, we may interpret the double integral of f over R as the volume
of the 3-dimensional solid region over the xy -plane bounded below by R
and above by the surface z = f (x , y).
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Double Integrals as Volumes

Each term f (xk , yk)∆Ak in the sum Sn =
∑

f (xk , yk)∆Ak is the volume
of a vertical rectangular box that approximates the volume of the portion
of the solid that stands directly above the base ∆Ak .

The sum Sn thus approximates what we want to call the total volume of
the solid. We define this volume to be

Volume = lim
n→∞

Sn =

∫∫
R

f (x , y) dA

where ∆Ak → 0 as n→∞.

P. Sam Johnson Double and Iterated Integrals over Rectangles 15/37



Double Integrals as Volumes

The following figure shows Riemann sum approximations to the volume
becoming more accurate as the number n of boxes increases.
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Fibini’s Theorem for Calculating Double Integrals

Suppose that we wish to calculate the volume under the plane
z = 4− x − y over the rectangular region

R : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

in the xy -plane.
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Fibini’s Theorem for Calculating Double Integrals

If we apply the method of slicing, with slices perpendicular to the x-axis,
then the volume is ∫ x=2

x=0
A(x) dx

where A(x) is the cross-sectional area at x .

For each value of x , we may calculate A(x) as the integral∫ y=1

y=0
(4− x − y) dy

which is the area under the curve z = 4− x − y in the plane of the
cross-section at x .
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Fibini’s Theorem for Calculating Double Integrals

In calculating A(x), x is held fixed and the integration takes place with
respect to y .

Hence the volume of the entire solid is

Volume =

∫ x=2

x=0
A(x) dx =

∫ x=2

x=0

∫ y=1

y=0
(4− x − y) dx dy .
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Fibini’s Theorem for Calculating Double Integrals

The expression on the right, called an iterated or repeated integral, says
that the volume is obtained by integrating 4− x − y with respect to y
from y = 0 to y = 1, holding x fixed, and then integrating the resulting
expression in x with respect to x from x = 0 to x = 2.

The limits of integration 0 and 1 are associated with y , so they are placed
on the integral closest to dy . The other limits of integration, 0 and 2, are
associated with the variable x , so they are placed on the outside integral
symbol that is paired with dx .
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Fibini’s Theorem for Calculating Double Integrals

What would have happened if we had calculated the volume by slicing
with planes perpendicular to the y -axis?
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Fibini’s Theorem for Calculating Double Integrals

As a function of y , the typical cross-sectional is shown above. Hence the
volume of the entire solid is

Volume =

∫ y=1

y=0

∫ x=2

x=0
(4− x − y) dy dx .

Do both iterated integrals give the value of the double integral?

The answer is ‘yes’, since the double integral measures the volume of the
same region as the two iterated integrals.
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Fubini’s Theorem (First Form)

A theorem published in 1907 by Guido Fubini says that the double integral
of any continuous function over a rectangle can be calculated as an
iterated integral in either order of integration.

Theorem 1.

If f (x , y) is continuous throughtout the rectangular region
R : a ≤ x ≤ b, c ≤ y ≤ d , then∫∫

R

f (x , y) dA =

∫ d

c

∫ b

a
f (x , y) dx dy =

∫ b

a

∫ d

c
f (x , y) dy dx .
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Fubini’s Theorem (First Form)

Fubini’s Theorem says that double integrals over rectangles can be
calculated as iterated integrals. Thus, we can evaluate a double integral by
integrating with respect to one variable at a time.

Fubini’s Theorem also says that we may calculate the double integral by
integrating in either order, a genuine convenience. When we calculate a
volume by slicing, we may use either planes perpendicular to the x-axis or
planes perpendicular to the y -axis.
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Example

Example 2.

Calculate

∫∫
R
f (x , y) dA for

f (x , y) = 100− 6x2y and R : 0 ≤ x ≤ 2, −1 ≤ y ≤ 1.
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Solution

The above figure displays the volume beneath the surface. By Fubini’s
Theorem,∫∫

R

f (x , y) dA =

∫ 1

−1

∫ 2

0
(100− 6x2y) dx dy =

∫ 1

−1

[
100x − 2x3y

]x=2

x=0
dy = 400.

Reversing the order of integration gives the same answer.∫ 2

0

∫ 1

−1
(100− 6x2y) dy dx = 400.

The double integral
∫∫

R f (x , y) dA gives the volume under this surface
over the rectangular region R.
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Example

Example 3.

Find the volume of the region bounded above by the ellipitical paraboloid

z = 10 + x2 + 3y2

and below by the rectangle R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.
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Solution

The surface and volume are shown in the figure. The volume is given by
the double integral

V =

∫∫
R

(10 + x2 + 3y2) dA =

∫ 1

0

∫ 2

0
(10 + x2 + 3y2) dy dx =

86

3
.

The double integral
∫∫

R f (x , y) dA gives the volume under this surface
over the rectangular region R.
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Evaluating Iterated Integrals

Exercises 4.

Evaluate the following iterated integrals

1.

∫ 2

1

∫ 4

0
2xy dy dx

2.

∫ 1

0

∫ 1

0

(
1− x2 + y2

2

)
dx dy

3.

∫ 4

1

∫ 4

0

(x
2

+
√
y
)
dx dy

4.

∫ ln 2

0

∫ ln 5

1
e2x+y dy dx

5.

∫ 2π

π

∫ π

0
(sin x + cos y) dx dy
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Solutions

1.

∫ 2

1

∫ 4

0
2xy dy dx =

∫ 2

1

[
xy2
]4
0
dx =

∫ 2

1
16xdx = 24

2.

∫ 1

0

∫ 1

0

(
1−

x2 + y2

2

)
dx dy =

∫ 1

0

[
x −

x3

6
−

xy2

2

]1
0
dy =

∫ 1

0

(
5

6
−

y2

2

)
dy =

2

3

3.

∫ 4

1

∫ 4

0

( x
2
+
√
y
)
dx dy =

∫ 4

1

[1
4
x2 + x

√
y
]4
0
dy =

∫ 4

1
(4 + 4y1/2)dy =

92

3

4.

∫ ln 2

0

∫ ln 5

1
e2x+ydy dx =

∫ ln 2

0

[
e2x+y

]ln 5

1
dx =

∫ ln 2

0
(5e2x − e2x+1)dx =

3

2
(5− e)

5.

∫ 2π

π

∫ π

0
(sin x+cos y)dx dy =

∫ 2π

π

[
−cos x+x cos y

]π
0
dy =

∫ 2π

π
(2+π cos y)dy = 2π
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Evaluating Double Integrals over Rectangles

Exercises 5.

Evaluate the following double integrals over the given regions R.

1.

∫∫
R

(√
x

y2

)
dA, R : 0 ≤ x ≤ 4, 1 ≤ y ≤ 2

2.

∫∫
R

ex−y dA, R : 0 ≤ x ≤ ln 2, 0 ≤ y ≤ ln 2

3.

∫∫
R

xyexy
2
dA, R : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1

4.

∫∫
R

y

x2y2 + 1
dA, R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
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Solutions

1.

∫∫
R

√
x

y2
dA =

∫ 4

0

∫ 2

1

√
x

y2
dy dx =

∫ 4

0

[
−
√
x

y

]2
1
dx =

∫ 4

0

1

2
x1/2dx =

[1
3
x3/2

]4
0
=

8

3

2.

∫∫
R
ex−ydA =

∫ ln 2

0

∫ ln 2

0
ex−ydy dx =

∫ ln 2

0
[−ex−y ]ln 2

0 dx =

∫ ln 2

0
(−e−x−ln 2 + ex )dx =[

− ex−ln 2 + ex
]ln 2

0
=

1

2

3.

∫∫
R
x y ex y2dA =

∫ 2

0

∫ 1

0
x y exy

2
dy dx =

∫ 2

0

[1
2
exy

2
]1
0
dx =

∫ 2

0

(
1

2
ex −

1

2

)
dx =[1

2
ex −

1

2
x
]2
0
=

1

2
(e2 − 3)

4.

∫∫
R

y

x2y2 + 1
dA =

∫ 1

0

∫ 1

0

y

(xy)2 + 1
dx dy =

∫ 1

0

[
tan−1(x y)

]1
0
dy =

∫ 1

0
tan−1 y dy =[

y tan−1 y −
1

2
ln |1 + y2|

]1
0
=
π

4
−

1

2
ln 2
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Integrate f over the given region.

Exercises 6.

1. Square : f (x , y) = 1/(xy) over the square 1 ≤ x ≤ 2, 1 ≤ y ≤ 2

2. Rectangle : f (x , y) = y cos xy over the rectangle 0 ≤ x ≤ π,
0 ≤ y ≤ 1

z = f (x , y)
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Solutions

1.

∫ 2

1

∫ 2

1

1

xy
dy dx =

∫ 2

1

1

x
(ln 2− ln 1)dx = (ln 2)

∫ 2

1

1

x
dx = (ln 2)2

2.

∫ 1

0

∫ π

0
y cos xy dx dy =

∫ 1

0

[
sin xy

]π
0
dy =

∫ 1

0
sin πy dy =[

− 1

π
cos πy

]1
0

= − 1

π
(−1− 1) =

2

π
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Volume Beneath a Surface

Exercises 7.

1. Find the volume of the region bounded above by the paraboloid
z = x2 + y2 and below by the square R : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

2. Find the volume of the region bounded above by the ellipitical
paraboloid z = 16− x2 − y2 and below by the square R : 0 ≤ x ≤ 2,
0 ≤ y ≤ 2.

3. Find the volume of the region bounded above by the plane
z = 2− x − y and below by the square R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

4. Find the volume of the region bounded above by the plane z = y/2
and below by the rectangle R : 0 ≤ x ≤ 4, 0 ≤ y ≤ 2.

5. Find the volume of the region bounded above by the surface
z = 2 sin x cos y and below by the rectangle R : 0 ≤ x ≤ π/2,
0 ≤ y ≤ π/4.

6. Find the volume of the region bounded above by the surface
z = 4− y2 and below by the rectangle R : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

P. Sam Johnson Double and Iterated Integrals over Rectangles 35/37



Solutions

1. V =
∫∫

R f (x , y)dA =
∫ 1
−1

∫ 1
−1(x

2 + y2)dy dx =
∫ 1
−1[x

2y + 1
3
y3]1−1dx =∫ 1

−1(2x
2 + 2

3
)dx =

[
2
3
x3 + 2

3
x
]1
−1

= 8
3

2. V =
∫∫

R f (x , y)dA =
∫ 2
0

∫ 2
0 (16− x2 − y2)dy dx =

∫ 2
0 [16y − x2y − 1

3
y3]20dx =∫ 2

0

(
88
3
− 2x2

)
dx =

[
88
3
x − 2

3
x3
]2
0
= 160

3

3. V =
∫∫

R f (x , y)dA =
∫ 1
0

∫ 1
0 (2− x − y)dy dx =

∫ 1
0

[
2y − xy − 1

2
y2
]1
0
dx =∫ 1

0

(
3
2
− x
)
dx =

[
3
2
x − 2

2
x2
]1
0
= 1

4. V =
∫∫

R f (x , y)dA =
∫ 4
0

∫ 2
0

y
2
dy dx =

∫ 4
0

[ y2
4

]2
0
dx =

∫ 4
0 1 dx = [x]40 = 4

5. V =
∫∫

R f (x , y)dA =
∫ x/2
0

∫ x/4
0 2 sin x cos y dy dx =

∫ x/2
0 [2 sin x sin y ]

x/4
0 dx =∫ x/2

0 (
√
2 sin x)dx = [−

√
2 cos x]

x/2
0 =

√
2

6. V =
∫∫

R f (x , y)dA =
∫ 1
0

∫ 2
0 (4− y2)dy dx =

∫ 1
0

[
4y − 1

3
y3
]2
0
dx =

∫ 1
0

(
16
3

)
dx =

[
16
3
x
]1
0
=

16
3

P. Sam Johnson Double and Iterated Integrals over Rectangles 36/37



References

1. M.D. Weir, J. Hass and F.R. Giordano, Thomas’ Calculus, 11th
Edition, Pearson Publishers.

2. R. Courant and F.John, Introduction to calculus and analysis, Volume
II, Springer-Verlag.

3. N. Piskunov, Differential and Integral Calculus, Vol I & II (Translated
by George Yankovsky).

4. E. Kreyszig, Advanced Engineering Mathematics, Wiley Publishers.

P. Sam Johnson Double and Iterated Integrals over Rectangles 37/37


